

NATIONAL VOCATIONAL TRAINING INSTITUTE

TESTING DIVISION

TRADE TESTING REGULATIONS AND SYLLABUS

TRADE: CONSTRUCTION ELECTRICAL

LEVEL: CERTIFICATE ONE

CERTIFICATE ONE

A. INTRODUCTION

i. The review of this syllabus has been generally influenced by the demands of industries due to its continuous change as a result of technological advancement and the changing needs of society.

It was also influenced by the TVET reforms under the directions of the new educational reforms with the view to opening up further education and training opportunities to TVET graduates.

QUALIFICATION	KNOWLEDGE LEVEL	SKILLS AND ATTITUDE:
Certificate 1	 To demonstrate a broad knowledge base incorporating some technical concepts. To demonstrate knowledge of the theoretical basis of practical skills. To demonstrate knowledge in numeracy, literally, IT and Entrepreneurial skills 	 Require a wide range of technical skills. Are applied in a variety of familiar and complex contexts with minimum supervision. Require collaboration with others in a team

The certificate ONE syllabus is designed to respond to the following level descriptors:

ii. The Knowledge in the safe use of electrical tools, equipment and materials. Wiring systems, occupational drawing, Installation of earthing systems, sequence of supply control, installation of Protective devices,

Inspection and testing, Lighting and Power circuits, trade drawing (circuit drawing), troubleshooting and

repairs of electrical wiring and related equipment in building and other structures, Preparation of planning and estimating of materials, trade science and calculations and Relevant IEE – Regulations.

B. GENERAL OBJECTIVES

On completion of this course the trainee should be able to:

- i) Understand the importance of electrical safety precaution at workshop.
- ii) Identify and use of correct tools and equipment.
- iii) Perform surface wiring, conduit wiring system and Trunking System.
- iv) Read and interpret occupational drawing (Blue Print)
- v) Install earthing system.
- vi) Select and arrange supply control in correct sequence.
- vii) Select and Install different types of protective devices.
- viii)Carry out visual Inspection and testing.
- ix) Wire lighting and Power circuit.
- x) Interpret and draw circuit diagrams.
- xi) Know how to diagnose fault in electrical installation and equipment.
- xii) Know the need for estimating electrical project.
- xiii)Understand the importance of trade science and calculation.

C. THE COURSE COMPONENTS

Trade Theory

Science and Calculation Trade Drawing General Paper Trade Practical

EXAMINATION: The candidates would be examined in the FIVE components listed in 'C' above.

Practical work must be carefully planned to illustrate application of the theory and to provide maximum opportunity for shop practice, laboratory work and demonstration.

D. KNOWLEDGE AND SKILLS REQUIREMENT

The prime objective of the programme is to provide knowledge and skills of the trade in a manner that will best meet the needs of the trade as well as industries using professional equipment.

E. ENTRY TO THE COURSE

Minimum education : Must have passed JHS or SHS examination. However, the selection of the students for the course is within the discretion of the head of the institution.

F. ELIGIBILITY FOR ENTRY TO EXAMINATION

Candidates may enter for examination only as internal candidate; that is those who at the time of entry to the examination are undertaking (or) have already completed the course at an approved establishment.

G. EXTERNAL EXAMINERS

The practical work of candidates will be assessed by an external examiner appointed by the Trade Testing Commissioner.

H. EXAMINATION RESULTS AND CERTIFICATES

Each candidate will receive record of performance given the grade of performance for the components Taken. These are:

- i) Distinction
- ii) Credit
- iii) Pass
- iv) Referred/Fail
- V)

Certificates would be issued to candidates who pass in all the components.

NOTE:

All Technical and Vocational trainees who aspire to take advantage of the opportunities opened to them in the educational reforms should NOTE that, for a trainee to progress to certificate Two (2) a pass in Certificate One (1) is compulsory.

I. APPROVAL OF COURSE

Institutions or other establishments intending to prepare trainees for the Examination must apply to:

THE COMMISSIONER

TESTING DIVISION

NVTI HEAD OFFICE

P. O. BOX MB 21, ACCRA

J. ACKNOWLEDGEMENT

NVTI wishes to acknowledge the preparatory material done by the team of Experts, which have been incorporated into this syllabus. They are:

- Mr. David Annan Tetteh (E.E.T. Part III)
- Mr. William Matey (E.E.T. Part III, C.Ed)

Government's desire to improve the lot of Technical/Vocational Education and Training which led to the preparation of this syllabus, is hereby acknowledged.

K. RECOMMENDED TOOLS AND EQUIPMENT

- 1. Digital/Analogue A.V.O. Meter
- 2. Voltmeter
- 3. Ammeter

- 4. Wattmeter
- 5. Megger Tester
- 6. Oscilloscope
- 7. 3-phase Induction Motor
- 8. Single phase motor
- 9. Clamp-on-ammeter
- 10. Buchanan crimping tool
- 11. Set of screw drivers (star/flat)
- 12. Combination pliers
- 13. Side cutters
- 14. Long nose pliers
- 15. Spirit level
- 16. Drilling machine
- 17. Claw hammer
- 18. Hacksaw
- 19. Wire stripper
- 20. Adjustable wrench

- 21. 1/2" E.M.T. Bender
- 22. 1/16" x ¹⁄₄
- 23. Electrician folding knife
- 24. Gimlet
- 25. Allen wrench set
- 26. Speed bore drill set
- 27. Steel tape measure
- 28. Tool box
- 29. Chisel
- 30. Punch
- 31. Conduit bending machine
- 32. Cordless drilling machine
- 33. Bench vice

Recommended Text Books

- 1. AC/DC Principles (By Paul T. Shultz) Publishers
- 2. Electrical Wiring Residential (By: Ray C. Mullen) Publishers
- 3. Electrical Motors and Control System (By: Petruzella Publishers)
- 4. Electrical Installation and Practice
- 5. Electrical Principles and Technology (By:
- 6. The Moltivate (By
- 7. Electricity (By: Herman Publishers)
- 8. Electrical Wiring Industrial (By: Smith Publishers)
- 9. Electrical Installation Work and Practice (By:...
- 10. 10. IEE Regulations 16th Edition

CERTIFICATE ONE – TRADE THEORY

				INSTRUCTIONAL
ITE M	TASK	CRITICAL-POINTS	SUB-POINTS	TECHNIQUES
M 1.0.	HEALTH AND SAFETY	 Construction- health protection Control of substances hazardous to health Use of work equipment directive The workplace directive 	 Provision of helmet by employers to employees Make rules as to when and where hard hats are be worn Provide the necessary instruction and training to all trainees the nature of risk and measures to be adopted to ensure safe control and operation Provision of safe equipments for safe operation/use Precautions to cover control devices 	Brainstorm the trainees on the Act and explain the importance of the Act 1974. Discuss the following Regulations and the act to the trainees. a. Electricity supply Regulation 1988 b. Electricity at work Regulation 1989
			 Gevices Carry out regular cleaning/maintenance Rectify defects that could be possible hazards Keep emergency exit and 	 c. Regulation for Electrical Installation 1991 (16th Edition I.E.E.) Discuss with the trainees protection against electrical equipment, shock,

	 Use of personal protective 	 escape routs clear Provision for use of safety boots and goggles Assess the health risk associated with any work activity involving hazards Monitor the place of work to establish if a problem exist 	risk of fire and excess current Show with the aid of a real object.
HEALTH AND SAFETY	The health and safety at work ACT 1974 Safety Regulations: a. Necessity for the wiring	• State the health and safety at work Act 1974 and explain.	Explanation and discussion with trainees
	 Regulation b. Purpose of the following Regulation 1. Electricity Supply Regulation 1988 2. Electricity at work Regulation 1989 3. Regulation for electrical installation 1991 (I.E.E. Regulation 16th) Electrical Safety 	The Regulation from a relevant I.E.I. Regulation	Discussion with explanation
	1. The importance of	The importance of earthing` and	Discussion with

earthing	the need of protection against electrical equipment.	explanation
 Protection of electrical equipment against a) Excess current b) Earth leakage c) Mechanical damage d) The need and the use of circuit protective conductor Protection against shock and risk of fire and corrosion 	The types of protective devices for excess current and earth leakage protection. Types of protective wears or cloth and tools for working under live conductors	Discussion with explanation

Μ				
2.0.	TYPES OF CABLES USE IN AN INSTALLATION	 Types of cables: 1. P.V.C. cable 2. P.V.C./P.V.C. Insulated and sheathed 3. Tough Rubber Sheath 4. P.LS.W.A. 5. P.V.C. Armoured Cable 2. Application and Relevant I.E.E. Regulation 3. Current carrying capacitor of a cable from: 1.5mm² to 16mm² 	The construction of the following cables: P.V.C. cab;e 2. P.V.C./O.V.C. Tough Rubber Sheath P.I.L.S.W.A. P.V.C. Armoured X.L.P.E. <u>Explanation</u> Regulation I.E.E. Regulation	Identify/Discuss with the trainees the construction and applications of the listed cables P.V.C. cable P.V.C./P.V.C. Tough Rubber Sheathed P.I.L.S.W.A. P.V.C. Armoured X.L.P.E. Discuss/explain with the trainees by means of a chart show in the maximum and minimum current carrying capacity of cables
3.0.	COLOUR CODING OF A CABLE	 The importance of colour coding Connection colour coded cable to appropriate terminals Identify colour coding for 	Colour coding cable according to terminals eg. Red → Live Black→ Neutral Yellow/Green→ Earth	Discuss with the trainees colours which represents Live, neutral and earth

		cores of cable, with Relevant IEE Regulations. 4. Cable for fixed wiring 5. Flexible cords and cables	The types a. Cores cables b. Flexible cable	Explain with the aid of a chart or real object colour coding of the following cables a. 3-core cable b. 4-core cable
4.0.	CABLE JOINTING	 Types of cables joints Married joint Tee joint Joint using – connectors 	 The various joints a. Married b. Tee c. Joint using connectors 2. Application for: a. Married joint b. Tee joint c. Connector joints 	Explain with the trainees the systematic approach to make the following joints. a. Married b. Tee joint c. Connected joint
5.0.	INSTALATION OF CIRCUIT	 The importance of : a. Lighting circuit b. Socket outlet cct c. Electric cooker – control circuit d. Bathroom installation e. Air-condition circuit with Relevant I.E.E. Regulations 	 Maximum lighting circuits on a final sub circuit with it ratings Rated final sub circuit for socket outlets Rating for cooker control unit depending on the size Ratings of A/C unit depending on the H.P. or KW 	Explain to the trainees the following areas and its applications and size of cables to be use on each circuit.
6.0.	IDENTIFICATIO N OF TYPES OF	Types of termination a. Eye loop termination b. Spade termination	Types: a. Eye loop type b. Spade type	Explain with the aid of a chart or real object the types, the methods

TERMINATION	c. Claw type terminationd. Crimped termination	c. Claw type d. Crimped type	and application of the following:
	 Method of Termination Pillar method Stud nut method Shredded connector Cable lig by –	Methods of the following: a. Pillar method b. Stud and nut method c. Cable lig method d. Shruded method	a. spade type b. claw type c. eye loop d. crimped type
7.0. CONDUIT NON METALLIC	Non metallic conduits. 1. P.V.C. rigid conduit 2. Flexible conduit (Corrugated) Conduit sizes: a. 16mm ² b. 20mm ² c. 25mm ² d. 32mm ² 3. Apply space factor with simple calculations on conduit 4. Conduit fittings and accessories. a. saddle b. coupler c. Tee box d. Four-way e. Trough way	 Define non metallic conduit 2. Application for a. P.V.C. rigid conduit b. flexible conduit Conduit accessories a. Saddle b. Coupler c. Four-way box d. Tee box e. Through way 	Explain to the trainees the size, lengths for each, and the area of use. Discuss with trainees how to bend and make offsets, and to make end socket of a P.V.C. conduit with relevant I.E.E. Regulation

8.0.	P.V.C. TRUNKING	P.V.C. trunking sizes a. 16mm x 16mm b. 16mm x 25mm c. 25mm x 40mm d. 16mm x 32mm e. 25mm x 50mm	Application or the area of use of the P.V.C. trunking sixes 16mm x 16mm 16mm x 25mm 16mm x 32mm 25mm x 40mm 25mm x 50mm	Explain to the trainees the types of installation for trunking systems and the Space factor to be applied
9.0.	CONSUMER CONTROL INTAKE	The positions of the consumer accessories a. Main switch gear b. Distribution board c. Splitter unit d. Service cut-out e. Service cable f. Consumer Control Unit	The functions of the consumer accessories a. Main switch gear b. Distribution Board c. Splitter Unit d. Service cut-out fuse e. Service cable f. Consumer Control Unit with the relevant I.E.E. Regulation	Discuss with the trainee the sequence of arrangement and the operation with relevant I.E.E. Regulation

10.0	EARTHING	The importance of –earthing	The sizes of cables to be use with	Discuss with the
	ARRANGEMEN	arrangement.	respect to the Installation	trainee the importance
	Т	a. Electrical Installation		of earthing
		b. Frames of appliances		arrangement and the
		e.g. heaters	2 The sequence of connections	process of burving
		c. The use of C.P.C. and	from the final sub circuit to	earth electrode or
		earthing conductor		
		d. Types of earth electrode	consumer control unit to the earth	plate.
		e.g. Rod and plate	– electrode	
		itom in (d) i o Rod and plate		
11.0		Voltage ranges or	The applications of the voltage	Discuss with the
11.0.		classification with respect of	classification	trainees by means of a
		the I.E.E. Regulations.	a. Extra low voltage	chart showing the –
	ON	a. Extra low voltage	b. Low voltage	classifications and the
		b. Low voltage c. Medium	c. Medium voltage	types of cables for
		voltage	d. High voltage	each class
		d. High voltage	e. Extral high voltage	
		e. Extra high voltage		
12.0	TRANSMISSIO	1. Types of transmission	Application for the transmission	Discuss with the
	N AND	poles	poles	trainees the definitions
	DISTRIBUTION	a. Concrete poles	a. Concrete poles	of transmission and
		reinforcement cement	b. Steel poles	distribution with the
		concrete pole	c. Pylons poles	relevant I.E.E.
		b. Steel pole		Regulation
		2. Substation	The constructions of the	
		a. Indoor	substation	Explain the working
		b. Out door	a. Indoor station	performance of the

	b. Outdoor station	indoor or outdoor
		station

ITE M	TASK	CRITICAL-POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
13.0	SINGLE PHASE DISTRIBUTION	The importance of the final sub circuit on a single phase distribution system. a. Lighting final circuit b. Socket outlet either in ring or radial c. Water heater circuit d. Electric cooker control unit e. Bell circuit f. Aircondition circuit	Specific locations of the following final sub circuits a. Lighting final circuit b. Socket outlets c. Water heater d. Electric heater e. Electric bell f. Aircondition circuit	Discuss with the trainees the importance of determine the fuse rating of a final sub circuit using the I.E.E. regulation
14.0.	3-PHASE 4- WIRE DISTRIBUTION SYSTEM	 The distribution systems Single phase distribution system 3-phase 3-wire distribution system 3-phase 4-wire distribution 	Application of the distribution systems. a. Single phase distribution b. 3-phase 3-wire distribution c. 3-phase 4-wire distribution	Explain to trainees the following distribution systems and the need of applying diversity factor and growth – factors.

		system 2. Balancing of single-phase load on 3-phase 4-wire distribution system 3. Simple explanation on	Applications of the factors a. Diversity factors b. Growth factors	
		a. Diversity factor and b. Growth factor		
15.0.	OVER CURRENT PROTECTIVE DEVICES	 Types of fuses and circuit breaking. 1. Types of fuses a. Semi enclose or re- wireable fuse b. Cartridge fuses and H.B.C. fuses 	The advantages and disadvantages of both semi- enclose fuse and cartridge fuses	Explain the principle of operation on both semi-enclose and cartridge fuses

ITE M	TASK	CRITICAL-POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
		2. Construction of both semi- enclose fuses and cartridge fuses	Applications on both semi-enclose fuses and cartridge fuses	Application for H.B.C. and rewireable fuse with respect to the relevant IEE Regulation
	OVER CURRENT	Types of circuit breakers	Ratings of both miniature circuit breaker and moulded case circuit	Discuss with the trainees the principles

	PROTECTIVE	a. Miniature circuit breaker	Breaker	and operation of the
	DEVICES	b Moulded appendituit		types of circuit
		b. Moulded case circuit	2. Advantages and	breakers mentioned
		broaker	disadvantages on both miniature	
			circuit breaker and mouided case	
		2 Application for both		Explain to the trainees
		2. Application for both	3. A simple discrimination of	the need of
		and moulded case circuit	protective devices on chalk board	discriminate circuits of
		breaker		a different categories
		broaker		with relevant I.E.E.
		3. Discrimination of over		Regulations
		current protective devices		
		with a simple explanations		
16.0.	LIGHTING	The lighting systems	Define both incandescent lamp	Discuss with the
	SYSTEM	a. incandescent lamp circuit	and fluorescent lamp	trainees the
		e.g. mament buib		operation of both
		b. Discharge lamp circuit	The parts of a complete	incandescent lamp
		e.g. fluorescent lamp circuit	fluorescent lamp set.	and fluorescent lamp
			-	circuit.
		2. To minimize stroboscopic	I o minimize stroboscopic effect	Eveloie to trains so the
		effect and its methods	and its method under single	Explain to trainees the
			phase and 3-phae supply system	applications on both
				fluoroscont Jamp circuit
				using real objects
				using real objects.

17.0	SINGLE PHASE MOTORS	Single phase motors. a. Capacitor start motor b. Capacitor start and run c. Repulsion motor d. Universal series motors e. Shade pole motor	Circuit diagram of: a. Repulsion motor b. Capacitor start motor c. Capacitor start and run d. Universal series motor e. Shaded pole motor	Explain to the trainees the construction and principle of operation of the following single phase a.c. motors a. Repulsion motor b. Universal series c. Capacitor start d. Capacitor start and run motor
18.0.	MOUNTING AND INSTALLATION OF SINGLE PHASE MOTORS	The importance of preparing form work for motor	The tools and materials needed for the formwork	Discuss with the trainees the step to be taken when preparing a form work for single phase motor mounting

ITE M	TASK	CRITICAL-POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
19.0.	TESTING AND INSPECTION OF SINGLE PHASE MOTORS	Inspection and testing for: a. Continuity of windings b. Insulation resistance test on windings c. Insulation resistance test between windings and earth d. Open circuit test on winding e. Short circuit test between windings	Measuring Instrument needed for the test e.g. multimeter megger tester To check for free rotation of shaft bearing	Explain to the trainees the sequence of test to be conducted and the expected reading on each test with respect to the relevant I.E.E. Regulation
20.0	TESTING AND INSPECTION OF AN INSTALLATION	The sequence of testing and inspection in an installation a. Verification of polarity b. Earthing test c. Earth electrode test d. Insulation resistance test e. Test of ring circuit continuity NB: Apply relevant I.E.E. Regulation	Types of measuring instrument for the various test Importance of the test a. Earthing test b. Earth electrode test c. Insulation resistance test d. Test for ring circuit continuity e. Verification of polarity	Explain to the trainees the sequence of test to be conducted with its specific readings. Apply relevant I.E.E. Regulation
21.0	PLANNING AND	Prepare or list materials requisition for a simple	The importance of preparing a	Discuss with the trainees how to

ESTIMATING	project	requisition for a particular project	prepare requisition for
	Prepare or design a requisition format		a simple project.

	INSTRUCTIONAL

	TASK	CRITICAL POINTS	SUB-POINTS	TECHNIQUE
1.0	INTRODUCTION TO ELECTRICITY	 1.1 .1 The structure of the following a) Matter b) Molecule c) Atom 	1.2.1 Definitiona) Matterb) Moleculec) Atom	Brainstorm with the aid of diagram the structure of an atom to trainees.
		 1.1.2 The rate of flow of Electrons 1.1.1 The conventional and electrons flow of current in a circuit. 1.1.2 Methods of generating Electricity Electromagnetic induction Chemical energy Solar energy 	 1.2.4a Electromagnetic induction coil 1.2.4b Define chemical energy . effect of two dissimilar metals immersed in a liquid called Electrolyte. 1.2.4c Define solar energy and explain. Example sun rays heat up a radiation panel which generate electricity and store it batteries (eg. Solar Panel). 	 1.3.2 Discuss the rate of flow of electrons with the aid of diagram to trainees. 1.3.3 Discuss the conventional flow of current in a circuit with the aid of diagram with trainees. 1.3.4 Lecture the trainees with the aid of a diagrams methods of generating electricity.
CON	STRUCTION ELECT	RICAL - CERTIFICATE ONE	E TRADE SCIENCE AND	
				INSTRUCTIONAL

TASK	CRITICAL POINTS	SUB-POINTS	TECHNIQUE
1.0	 1.1.3 Definition of Conductor Types of conductor Application of Each Conductor List and explain the functions of different types of Conductors Insulators Semi conductors 	 1.2.5a Conductor: Definition and the uses of the following; a) Copper b) Aluminum c) Carbon d) Tungsten e) Nichrome f) Brass 1.2.5b Insulators: Definition and the uses of the following a) P.V.C. b) Rubber c) Magnesium Oxide d) Mica e) Porcelain f) Asbestos 	 1.3.5a Discuss the function of conductor with the trainees in groups. 1.3.5b Discuss function of Insulators with trainees in groups

				INSTRUCTIONAL
	TASK	CRITICAL SKILLS	SUB-SKILLS	TECHNIQUE
1.0		 The functions of different types of: Conductors Insulators Semi conductors 	 1.2.5c) Semi Conductors: Definition Germanium Silicon eg Diode transistor 	1.3.5c Discuss the function of Insulators with trainees using real objects.
		1.1.6 Magnetic, Heating and Chemical effects of electric current and its application	 1.2.6 Definition: Magnetic effect Heating effect Chemical effect Application of EACH of the above 	1.3.6 Demonstrate to trainees the effect of connecting electric pressing iron to a source of supply by using a real object.
2.0	D.C. CIRCUIT	 2.1.1 Trainees should be able to ; a) State Ohm's Law b) Solve problems on resistors connected in series. c) Solve problems on 	2.2.1b In series circuit Total Resistance is always greater than the largest individual resistor.	 2.3.1a Discuss Ohm's Law with the trainees. 2.3.1b Explain the method of calculating resistors connected in series to trainees.
		Resistors connected in parallel. 2.1.2 $\underline{1} = \underline{1} + \underline{1}$ RT R1 R2	2.2.1c In parallel circuit the total resistance is the reciprocal of the	2.3.1c Explain the method of calculating resistors in parallel to the trainees.

	2.1.3RT= <u>R1 + R1</u> for two Resistanc R1 + R2 in parallel	individual resistance	e.
2.0	2.1.4 The sum of Voltage drop in series.	2.2.4 Total Voltage Drop VT = V1 + V2 + V3	2.3.4 Explain the method of calculating the voltage drop in a series circuit to trainees.
	2.1.5 The sum of Individual current in a parallel circuit. 2.1.6 Finding by Ohm's	2.2.5 Total Current $I_T = I_1 + I_2 + I_3$	2.3.5 Explain the method of calculating the total current in a parallel circuit to trainees.
	Law Resistance, current and voltage in ; • Series circuit • Parallel circuit • Series and parallel combination	2.2.6 The formula to use is: $I = \bigvee_{R} A$ Where: V = Applied Voltage I = Current (A) R = Resistance (R)	2.3.6 Explain how to calculate for current, Resistance and Voltage using Ohm's Law to trainees.
	2.1.7 Solve problems involving power and energy.	2.2.7 To calculate for power: $P = I^2 x R$ P = V x I	2.3.7 Explain how to calculate power and energy in a circuit to trainees

			$P = V^{2}/R$ Where P = Power (W) I = Current (A) R = Resistance (R) V = Voltage (V)	
2.0		2.1.8 To calculate for energy is: E = P x T Where : E = Energy (J) P = Power (W) T = Time (Sec)	2.2.1 Explain the Law of Conservation of Energy	
3.0	MAGNETISM	3.1.1 Define a Magnet	3.2.1 Definition of a magnetic material and its properties.	3.3.1 Explain to trainees the ability of a magnet to attract other materials by using one to attract a nail.
		 3.1.2 Types of Magnet Natural Permanent Temporal 	3.2.2 The difference between types of magnet to trainees.	3.3.2 Show the types to trainees and explain.
		3.1.3 Types of Magnetic Materials.	 3.2.3 Types of magnetic materials; a) Iron b) Steel c) Cobalt 	3.3.3. Explain to trainees the field battery of magnetic lines of force.

	3.1.4 Magnetic lines of	3.2.4a Magnetic lines of	
	Force	force.	3.3.4 Laboratory
		3.2.4b The direction of	experiment
		the lines of flux from	
		north pole to south pole.	
		3.2.4c Magnetic	
		compass and iron	
		fillings to show the	
		magnetic lines on a	
		piece of paper.	
3.0	3.1.5 Properties of	3.2.5 The five (5)	3.3.5 Discussions in a
	magnetic lines of	characteristics of lines	group form the law of
	force and the laws of	of Magnetic flux	attraction to trainees.
	attraction and		
	repulsion.		
	•		
			0.0.Co. Dreineterre
			3.3.6a Brainstorm
	3.1.6 State magnetic units		trainees the magnetic
	and their uses.	3.2.6a Magnetic flux	units and symbols.
		(symbol) The unit of	
		magnetic flux is the	
		Weber (wb).	3.3.6b Calculate
			magnetic problem with
		3.2.6b Flux density (B)	trainees using formulas
		Flux density is	

		3.1.7 Magneto motive force (F) Magnetic flux to be established in a coil = Number of turns X Current in the Coil = N1 ampere turn Magnetism force (H): It is the m.m.f. per unit length of the magnetic circuit. Therefore $H = \underline{F}$ (N1)	measured in tesla (T) 3.2.7 Compare Magnetic circuit to Electric circuit eg mmf = Voltage Flux (□)= Reluctance =Resistance	
4.0	ELECTRO MAGNETISM	4.1.1 Trainees should be able to; Draw a magnetic field around a conductor due to a current flowing through it.	 4.2 .1 A straight conductor showing direction of current. Magnetic flux around the conductor. A loop of wire showing the direction of current of flux – pattern. A solenoid showing direction of current flux pattern. 	 4.3 Explain to trainees the shape of the magnetic field and the direction of current in a straight conductor with a diagram and a real objects. Brainstorm trainees about the shape of the field and the direction of the current to loop.

				INSTRUCTIONAL
	TASK	CRITICAL POINTS	SUB-POINTS	TECHNIQUE
4.0		- Define electromagnetic induction.	Application - Bell - Relay - Contactor - Motor - Generator	Discuss the application of bell, Relay, contactor, motor and generator to trainees.
		Application of electromagnetic devices.	4.2.2 State factors upon which the strength of electromagnet depends on.	Discuss the magnetic field and the induced e.m.f. established in the coil with the trainees.
		Definition: - Self Induction	Define: 1) Self Induction Unit = Henry (H) Symbol = L	Explain self and mutual induction to the trainees

	- Mutual Induction		
		2) Mutual Induction	
		Unit = Henry (H)	
		Symbol = M	

	TACK			INSTRUCTIONAL
	IASK	CRITICAL POINTS	SUB-PUINTS	TECHNIQUE
		5.1	5.2	5.3 Discuss and explain
5.0	MEASURING	Basic parts of an	1) Operating devices.	the operating, controlling
	INSTRUMENT	Instrument.		and damping devices to
			2) Controlling device:	trainees.
			a) Gravity Control	
			b) Spring Control	
			, , , , , , , , , , , , , , , , , , , ,	
			3) Damping device:	
			a) Oil dashpot	
			damping	
			b) Eddy Current	
			damping	
			Gamping	

		The principles of operation of the moving coil instrument.	 4) The construction and operations. Advantages and disadvantages. A complete circuit for a moving coil instrument. 	Discuss with the trainees the moving coil instrument using sketches to show parts as well as real objects.
5.0	MEASURING INSTRUMENT	Moving iron instrument.	Repulsion types which depends on mutual repulsion and attraction type which depends on the attraction of an iron. Advantages and Disadvantages.	Discussion with trainees both the repulsion and attraction types of moving iron instrument using real objects.
		Extensions of range of measuring instruments.	Shunt Resistor connections. Multiplier connections Solve problems on extensions of range of instrument. Circuit diagram of connection to extend	In groups discuss connection diagrams with trainees on the use of shunt and the multiplier. Solve problems on extension of range with trainees.

			ranges of Instrument using the shunt and the multiplier.	
6.0	ALTERNATING CURRENT (A.C) (PRINCIPLES)	 6.1 The AC wave form and advantages. Explain the meaning of the following terms; Cycle Frequency Periodic Time Mechanical degrees Electrical degrees 	6.2 Description:b) Advantages.	6.3 Explain to trainees on how the A.C sine wave is obtained.Explain the meaning of a cycle to trainees using a diagram of a sine wave.
		The meaning of the following a) Instantaneous Values b) Average Values c) Maximum Values d) Root Mean Square Value		Explain and discuss with the trainees the meaning of the terms in association with AC sine wave.

				INSTRUCTIONAL
	TASK	CRITICAL POINTS	SUB-POINTS	TECHNIQUE
6.0		The phasor	Drawing:	Draw the phasor diagram
		representative diagram of	a) Resistive current	on chalk board and
		alternating voltage and	in phase with	explain to trainees.
		current.	voltage.	
		a) Resistive circuit.	b) Inductive current	
		b) Inductive circuit	in respect to the	
		c) Capacitive circuit	voltage	
			c) Capacitive circuit	
		Solve problems involving;	in respect to the	
		a) Maximum Value	voltage	
		b) Average Value	Calculation	
			a) Maximum Value	
		c) Root Mean Square		
		value	b) Average Value	
			c) Root mean square	
			value	
			Define and Explain	
		Define the following:	a) Measure and ability	Explain the definition of
		Inductance	of a circuit to produce	Inductance in an AC
		Inductive Reactance	magnetic field and	Circuit
		in an AC Circuit	stored.	Symbol = XL

		b) The position of pure inductive circuit in an	Unit = Ohm
0.0		AC supply.	F 1 ' ' ' ' ' ' ' '
6.0	State the factors affecting	Statement:	Explain to the trainees
	Circuit	a) Circuit containing	factors affecting
	Circuit.		inductance in an AC
		b) induced voltage in	
		inductive load.	
		c) Inductive load in AC	
		circuit.	
		Explanation:	
	Explain the meaning of impedance and solve	Impedance is the total opposition offered to the	Discuss the meaning of impedance with the
	problems involving	flow of electric current	trainees.
	in an AC circuit	\Box	
		Formula = $7 - \sqrt{B^2 + XI^2}$	
		Define Capacitance and	
		explain:	
		1) Capacitance	
	Explain the meaning of a	Reactance	Explain the meaning and
	Capacitance in A C	Symbol = Xc	factors affecting
	circuits	Unit = Ohm (Ω)	capacitive Reactance in

		 2) Solve simple calculations on capacitance in an AC circuit. 3) The phasor diagram of a pure capacitive load. 	relation to phasors to the trainees
6.0	State the factors involving capacitance in an AC circuits.	 Statement: a) The capacitance reactance decreases with increase in frequency. b) Increase in Reactance result in decrease in current 	Explain the methods of solving problems
	Solve problems involving resistance and capacitance in an AC circuit	Calculate for a) parallel circuit b) series circuit formula = $Z=\sqrt{R^2 + Xc^2}$ symbol = Xc Unit = Ohm (Ω)	

7.0	ELECTROSTATIC	7.1 Trainee should be	7.2 Define electro static	7.3 Explain to the
	S	able to	The charge stored in an	trainees electric charge
			electric field is	and solve electric charge
		Explain Electric charge	measured in coulombs	problems
		and Electric field in DC	that is the product of	
		circuits	current flow and time	
			which it flows	
			Q=IT(C)	
			Where I = Current (A)	
			T = Time (Sec)	
			Q = Quantity(C)	Explain the definition of
				capacitor to the trainees
			Define and state the	
		Define a capacitor	unit.	

	TASK	CRITICAL SKILLS	SUB-SKILLS	INSTRUCTIONAL TECHNIQUE
7.0		List the types of capacitors	List the types a) Paper b) Mica c) Ceramic d) Electrolytic	Explain types of capacitors to trainees.
		Describe types of capacitors and state its	Description and application	Discuss types of capacitors with trainees

		application.	a) Paperb) Micac) Ceramicd) Electrolytic	using real objects.
		Solve problems involving capacitors connected in series and parallel.	Calculation: Use formula i.e. = CT = $1/C_1+1/C_2+1/C_3$ for series and CT=C1 + C2 + C3 for parallel.	Solve problems with trainees using the formula.
		Explain how to test a capacitor	 Explanation 1) Connect Instrument to it and read out the value directly 2) Charge the capacitor by connecting it to a supply and after disconnection, short the ends of the capacitor 	Explain and demonstrate the testing of capacitors to trainees using real object
8.0	SINGLE PHASE MOTORS	8.1 DEFINE A SINGLE phase motor and list the types.	8.2 Definition and types:1. Split phase2. Permanent split phase	Discuss with the trainees the definition and the types.

lc si	dentify main part of a ingle phase motor.	 3. Capacitor start 4. Shaded pole 5. Repulsion 6. Universal series Identification a) Starter b) Rotor 	Show part of a single phase motor to the trainees.
E	Explain how the rotating nagnetic field is produce.	 c) End shield d) Bearing e) Centrifugal Detail explanations 	Explain to the trainees how the rotating magnetic field is produce
E	Explain the characteristics of each types of motor • Universal • Split phase • Repulsion • Shaded pole	Detail explanations	Explain to the trainees the characteristics of each type of motor.

				INSTRUCTIONAL
	TASK	CRITICAL SKILLS	SUB-SKILLS	TECHNIQUE
8.0		State types of faults in single phase motor	State the following Open circuit Short circuit Grounded winding Centrifugal switch Worn or tight bearing. 	Discuss with the trainees the various types of faults on a single phase motor.
		Identify and rectify fault in a single phase motor	 a) Open circuit test (multimeter) b) Short circuit test (multimeter) c) Grounded Winding (Insulation Resistance Test) 	Explain to the trainees the various types of rectifying fault in a single phase motor.
9.0	TRANSFORMERS	9.1 Explain the meaning of a transformer.	9.2 Define and give a detail explanations.	9.3 Discuss the meaning of a transformer with trainees.
		Describe the principles of operation of a transformer. Construction of a	Description and operation of a transformer.	Explain to the trainees the construction and operation by using chart or real object.

		transformer.	Descriptions of a	
			transformer.	
		Explain the types of		
		transformers.	Explanation on	
			a) Double wound	Discuss types of
			transformer	transformers with the
			b) Auto transformer	trainees.
		Explain the use of	Applications of the	Mention few areas of use
9.0		transformers	types	to the trainees
			a) Double Wound	
			b) Auto transformer	
		10.1 Trainees should be		
		able to:		
			10.2 Definition and	10.3 Explain the types
		Define and list types of	reading of Resistor	and how to read Values
		themistors and Resistors	value by using the	by the colour Code.
		and their Ratings.	colour codings.	
		List types electronic		Discuss with the trainees
		Capacitors.	Definition and list types	the types and its
			a) Air	applications.
10.	BASIC		b) Silver Mica	
0	ELECTRONICS		c) Polypropylene	
		Define and list types of	d) Tantalum	
		Semi-Conductor materials.		Explain the types of
			Definition and list types	application to the
			a) Silicon	trainees.

		Describe the P & N type of	b) Germanium	
		semi-conductors		
			Applications	Explain the types to the
		Describe the construction		trainees with its
		and operations of the		application.
		following	Applications of the	
		a) Zener diode	following:	
		b) Rectifier diode	a) Zener diode	
		c) Thyristor	b) Rectifier diode	
		d) Transistors	c) Thyristor	
			d) Transistors	
		11.1 Trainees should be	11.2 Draw and labellel	11.3 Draw the power
11.	POWER SUPPLY	able to draw a	simple block	supply unit on board and
0		complete block	diagram of a power	explain to the trainees.
		diagram for power	supply unit.	
		supply unit.		
				Explain the construction
		Describe the construction	Explanation on the	and
		and principles of	make-ups and its	Operation to trainees.
		operations of a simple	operations.	
		power supply unit.		
				Discuss with the trainees
		Application of power		the applications and area
		supply unit.		of use.

CONSTRUCTION ELECTRICAL - CERTIFICATE ONE TRADE DRAWING

				INSTRUCTIONAL
	TASK	CRITICAL SKILLS	SUB-SKILLS	TECHNIQUE
1.0	ARCHITECTURAL	1.1 Interpretation of	1.2 The architectural	Use chart to explain to
	AND LOCATION	symbol	symbols.	trainee
	SYMBOLS TO			
	(BS3939)			Trainee practice on
	PART II			symbols drawings
2.0	LAY OUT	2.1.1a Block diagram of		Facilitator guides trainee
	DRAWING FOR	simple lighting and power		to develop a simple
	INSTALLATION	circuit.		lighting and power circuit
	WIRING	2.1.1b Circuit diagram of		
		simple lighting and power		
		in circuit.		
		2.1.1c Line diagram of		
		simple lighting and power		
		circuit.		
		2.1.2a Developing a		
		layout diagram of a simple		
		lighting and power circuit.		
		2.1.2b Layout diagram to		
		develop an actual wiring		
		diagram.		

CONSTRUCTION ELECTRICAL - CERTIFICATE ONE TRADE DRAWING

				INSTRUCTIONAL
	TASK	CRITICAL SKILLS	SUB-SKILLS	TECHNIQUE
3.0	THE USE AND	3.2 By calculation	3.2.5 Reading of tape	Explanation, discussions
	APPLICATION OF	method determine	dimensions.	and practicing with
	SCALE	scale factor	Measure	trainees methods
		(conversion of actual	dimensions	determining scale factor,
		dimension to a given	example	conversion of actual
		scale)	Classroom	measurement to scale
			Workshop	
			 3.2.6 Conversion of actual measurement to the following scale: 1:100 1:80 	
			• 1:50	
			reduction of sizes using	
			Workshop	

	TASK	CRITICAL SKILLS	SUB-SKILLS	INSTRUCTIONAL TECHNIQUE
1.0	WORKSHOP SAFETY	1.1.3 Personal safety practices1.1.4 Artificial respiration	 1.2.1 The use of protective gears. Mouth to mouth method. Holger Neilson 	1.3.1 Explain and demonstrate to trainees, the correct way to wear and use the protective gears using real objects.
			method.	1.3.2 Explain and demonstrate to trainees the correct method and sequence of applying artificial respiration
2.0	TOOLS AND EQUIPMENT	2.1 Basic electrical hand tools and work piece eg. Ladders, scaffold		2.3 Explain and demonstrate the care and use of the tools using the real objects.
3.0	METHOD OF PREPARING TERMINATION	3.1 Termination of cable into accessories.	 3.2.1 Preparation of cable loop for Pillar terminal Stud and nut terminal 	3.3.1 Demonstrate to trainees how to prepare termination of cables using real objects.

			Shrouded terminal	
			3.2.2 Terminate cables into cable lugs by crimping method.	3.3.2 Demonstrate to trainees using real object
4.0	JOINING OF CONDUCTORS	4.1 Joining of cables	 4.2 Joining of cables by means of; Married Joint Tee Joint Connector Terminal 	4.3 Explain and demonstrate to trainees.
5.0	PREPARATION AND INSTALLATION OF P.V.C. CONDUIT	 5.1.1 Preparation of PVC conduit. Bending 90° Make offset. Make end socket on conduit. 5.1.2 Installation of PVC Conduit	 5.2.1 Materials and tools. 5.2.2 Marking out tools. 5.2.3 Cutting tools. Develop the 90° bend. Develop an offset bend. Make and socket on the conduit. Fix PVC conduit and boxes on board. 	 5.3.1 Demonstrate the procedure to the trainees with real object 5.3.2 Explain and demonstrate the procedure to the trainees
		Conduit.	5.2.4 Materials and tools. a) Mark out on	with real object.

			board. b) Erect conduit with saddles. c) Fix boxes. Test for firmness of conduit and boxes.	
6.0	PREPARATION AND INSTALLATION OF P.V.C. TRUNKING	 6.1 Preparation of PVC trunking. a) Tee Joints b) Mitre Joints 	 6.2 Materials and tools to; Marking out trunking with a tape. Fabricate Tee Joint. Fabricate Mitre Joint. Fixing trunking and patress boxes on board. 	6.3 Explain and demonstrate the procedure to the trainees using real object.
7.0	WIRING OF BELL CIRCUIT	 7.1.1 Accessories; Bell Bell push D.C. Battery 	 7.2 Materials and tools for the bell circuit. 8 to 12v step down bell transformer or battery. 	7.3 Explain and demonstrate the procedure to trainees with real object

			 8 to 12v electric bell. Bell pushes. Wiring the circuit. 	
8.0		8.1.1 Surface wiring	8.2.1a Select materials	8.3.1 Explain and
	BOARDS AND	a) Circuits:	and tools.	demonstrate the
	WALLS	 One-way switching 	8.2.1b Marking	procedure of the wiring to
		 Two-way switching 		trainees using real object.
		 Intermediate switching. 	8.2.1c Circuit	
		b) To control one or two	8.2.1d Fixing	
		lamps.	accessories	

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB-SKILLS	TECHNIQUE
8.0	8.1.2 Conduit wiring:	8.2.2 Select materials	8.3.2 Explain and
	 One-way switching. 	and tools;	demonstrate the
	 Two-way switching. 	 Marking out on 	procedure of the wiring to
	 Intermediate switching. 	board.	trainees with real object.
	b) To control one or two	 Bend angles and 	
	lamps.	offset according to	
		the wire.	
	8.1.3 Surface wiring (Socket	Saddle conduit and	
	Outlets).	draw-in-cables.	
	1) Circuits;	Fix accessories	
	 3 or 4 socket outlets in 		8.3.3 Explain and
	ring and radial.	8.2.3 Materials and	demonstrate the wiring to
		tools,	procedure of the wining to
	8.1.4 Circuit in PVC conduit	Marking out on	
	pipes;	board Circuit wiring	8.2.4 Explain and
	• 3 or 4 socket outlets in	Fix accessories	demonstrate the
	a ring and radial.		procedure of the wiring to
	• 3 or 4 socket outlet in a	8.2.4 Materials and	trainees using real
	ring with 1 or 2 spur	tools.	
		Marking out on	
		board.	
		 Bend angles and 	

	offset according to
	wiring.
	Saddle conduit
	pipes and drawn-in-
	cables.
	Fixing accessories

TASK	CRITICAL SKILLS	SUB-SKILLS	INSTRUCTIONAL TECHNIQUE
8.0	 8.1.5 Trunking Wiring PVC trunking. One-way switching Two-way switching Intermediate switching b) To control one or two lamps. 	 8.2.5 Tools and materials. Marking out on board. Fabricate Tee and Mitre joint. Fix trunking on board by using screws. 	8.3.5 Demonstrate to trainees with real object.

			Lay in cableFixing accessories	8.3.6 Explain and demonstrate the
		 8.1.6 Trunking wiring for socket outlets. a) Using PVC trunking wire the following circuit. or 4 socket outlet in ring with a spur. 3 or 4 socket outlets in a radial. 	 8.2.6 Materials and tools, Marking out on board. Circuit wiring Fixing accessories 	procedure to trainees using real object.
9.0	INSTALLATION OF SERVICE POSITION EQUIPMENT	 9.1 The sequence of supply arrangement on meter board. a) Service cut-out b) Connection for the meter c) Main switch d) Distribution Board or consumer units 	 9.2.1 Materials and tools. Marking out position for accessories. Fixing accessories on board Wiring accessories 	9.3 Explain and demonstrate the procedure to trainees using real objects
10. 0	EARTHING ARRANGEMENT	10.1.1 Earthing of anInstallation . Rod and platetypes of electrode.10.1.2 Method of buryingearth electrode.	 10.2 Tools and materials a) Size of CPC/earthing cable (depending on the size of Installation). 	10.3 Explain and demonstrate the process to trainees with real object

			b) Inspection chamber.	
			c) Burying earth	Demonstration
			electrode in the	
			inspection chamber.	
			d) Connecting the	
			earthing conductor to	
			electrode by earth	
			clamp.	
			e) Connecting earthing	
			lead to the earthing bar	
			on the consumer unit.	
11.	TESTING OF AN	11.1 Types of installation	11.2 Procedures for an	11.3 Demonstrate the
0	INSTALLATION	test;	installation test;	various method of testing
		a) Polarity test	a) Polarity test	to the trainees with real
		b) Continuity test	b) Continuity test	object
		c) Earthing test	c) Earthing test	
		d) Insulation resistance	d) Insulation	
		test	resistance test	
12.	DISCHARGE	1.1.1 Parts of	12.2.1 Draw a circuit	12.3.1 Explain the
0	LIGHTING	fluorescent light	diagram.	procedure for wiring a
		circuit	a) With the aid of the	circuit to the trainees.
		Choke	circuit diagram Wire the	
		Starter	fluorescent light circuit	
		Lamp holders	using the listed	
		Capacitor	accessories.	
				12.3.2 Explain the

		 1.1.2 List the parts of sodium vapour lamp circuit Ballast/Transformer Screw lamp holder Igniter Capacitor 	12.2.2 Circuit diagram. 12.2.3 Circuit diagram.	procedure for wiring the lamp circuit with real object.
13. 0	SINGLE PHASE DISTRIBUTION SYSTEM	 13.1 Wiring and testing a complete Installation to the distribution board. Lighting final circuit Socket outlet either in ring or radial Water heater circuit Electric cooker unit Bell circuit Air-condition circuit 	 13.2 Materials and tools. Correct size of cable. Developing wiring circuit. Wiring the Installation as per-drawing. Testing the complete Installation. 	13.3a. Explain the procedure of the wiring to trainees.b. Facilitator guides the trainee to wire and test the installation

	TASK	CRITICAL SKILLS	SUB-SKILLS	INSTRUCTIONAL TECHNIQUE
14. 0	SINGLE PHASE ELECTRIC MOTORS	 14.1 The various types of single phase motors. Capacitor start Capacitor start and run Shaded pole motor Universal series motor Repulsion motor 	 14.2 Connecting single phase motor to the supply. Capacitor start. Capacitor start and run. Shaded pole motor. Universal series motor. Repulsion motor. 	14.3 Explain the process of the wiring or the connection to the supply using real object.
15. 0	MOUNTING AND INSTALLATION OF SINGLE PHASE MOTORS	15.1.1 Design frame work.15.1.2 Construct cement foundation for motor stand.	15.2.1 Fixing template and Bolt.15.2.2 Fixing machine directly on concrete floor or bed.	15.3 Explain the procedure for mounting and fixing of single phase motor using real object.
16. 0	TESTING AND INSPECTION OF SINGLE PHASE MOTORS	 16.1 Testing procedure for: a) Continuity of windings. b) Insulation 	16.2 Appropriate measuring instrument for testing. Example, megger tester, multi- meter (AVO)	16.3 Explain the procedure and demonstrate to trainees using real object

Resistance between	
windings.	
c) Insulation resistance	
between winding	
and earth.	
d) Open circuit in	
windings	
e) Short circuit between	
windings	

				INSTRUCTIONAL
	TASK	CRITICAL SKILLS	SUB-SKILLS	TECHNIQUE
17. 0	BASIC ELECTRONICS	 17.1.1 Resistors by their colour code : Black - 0 Brown - 1 Red - 2 	17.2.1 A.V.O. Meter to find the value of coloured coded resistor value.	17.3.1 Explain and demonstrate a colour coded resistor to trainees. Using real object
		17.1.2 Types of diodesexampleRectifier diodeZener diode	17.2.2 Use A.V.O.Meter to find polarity of a diode exampleRectified diodeZener diode	17.3.2 Explain and demonstrate diode polarity position (+)

17.1.3 Ty transistors • P.N. • N.P.	pes of s example P. Transistors N. Transistors	N U	legative (-) to trainees. Jsing real object
17.1.4 Tra terminals • Emi • Colla • Bas	ansistors or pin example tter pin ector pin e pin 17.2.4 to iden or term • Emi • Coll • Bas	Use AVO Meter 17 tify transistor pin de ninal example tra tter pin ector pin U e pin	7.3.3 Explain and lemonstrate or show ransistor pin to trainees. Jsing real object